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Gauge fields and strings

The idea that a large N gauge theory reorganizes into a string
theory has a long and fruitful history, dating back from ’t Hooft
and coming to full-bloom in the AdS/CFT correspondence.
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In particular, a state labelled by gauge-invariant words in a large
N gauge theory is dual to a state consisting of closed strings
propagating in a bulk spacetime:

A whole lot about the large N thermodynamic properties of string
theory on AdS backgrounds can be learned from the above
statement, especially at weak ’t Hooft coupling λ.
[Witten 98, Sundborg 99, Aharony-Marsano-Minwalla-Papadodimas-Van Raamsdonk 03]
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This is because, at λ = 0, the partition function of a U(N) gauge
theory counting gauge-invariant states on S1β × S3 reduces to a
unitary integral over a holonomy matrix U:

ZN(β) =
∫
U(N)

dU exp

(
∞∑
n=1

1
n f(q

n)TrUn TrU−n

)

Large N saddles of the matrix integral ZN(β) correspond to the
thermodynamic phases of the bulk in the stringy regime.

When f(q), the single-letter partition fn, is taken to be that for a
superconformal index, these saddles can be interpreted as a sum
over BPS families of Euclidean black holes.
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Main question

What happens to the statement,

A state labelled by gauge-invariant words in a large N gauge
theory is dual to a state consisting of closed strings propagating
in a bulk spacetime.

when N takes a finite, integer value?

4



An apparent tension

At finite N, there is an apparent tension regarding the spectrum
of states of the bulk and boundary theories:

In the boundary gauge theory, states formed by exciting the
vacuum with single trace operators are orthogonal at large N but
become constrained by trace relations when N is finite.
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For example, at N = 2 a single 2× 2 matrix-valued scalar X
satisfies the trace identities

(Tr X)3 − 3(Tr X)(Tr X2) + 2(Tr X3) = 0
(Tr X)4 − 6(Tr X)2(Tr X2) + 3(Tr X2)2

+ 8(Tr X)(Tr X3)− 6(Tr X4) = 0
...

and so on, where every Tr (X>2) can be decomposed in terms of
sums of products of lower traces.

Therefore, the total number of states, at fixed values of the
conserved charges and λ, decreases as N is decreased.
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On the other hand, in the bulk, non-perturbative states such as
black holes and D-branes become lighter at finite gs.

Such objects—which are present in addition to the perturbative
string states— would naively result in many more states at finite
gs compared to those at small gs (at fixed charges and
λ = L4/α′2).
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How does one reconcile these differing expectations?

To avoid a paradox, it is typically posited that non-perturbative
objects in string theory represent highly redundant descriptions
of the same set of quantum states

— so much so that the non-perturbative effects actually need to
cut down the total number of states!
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The expected upper bound on the single-string spectrum is
called the stringy exclusion principle.

While this principle is thought to be a generic feature of string
theory, there is little quantitative understanding of the
mechanism underlying the principle.
[Maldacena-Strominger 98, Myers 99, McGreevy-Susskind-Toumbas 00]
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Outline

In my talk, I will

(1) describe a non-perturbative effect that implements the
stringy exclusion principle in the bulk [JHL-Stanford, in progress]

(2) propose a holographic dual of these non-perturbative
contributions in the boundary gauge theory [JHL 23]
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Giant graviton expansion

The new input that enables progress on these questions is a
formula called the giant graviton expansion [Imamura ’21, Gaiotto-JHL ’21].

The giant graviton expansion is a formula that relates the BPS
sectors of gauge theories and their string duals:

ZN(q) = Z∞(q)
∞∑
k=0

qkNẐk(q).

ZN(q), the superconformal index of a U(N) N = 4 SYM at finite N,
can be expressed as a sum over BPS indices qkNZ∞(q)Ẑk(q) of
AdS5 × S5 in the presence of k giant graviton branes.

Z∞(q): index of S5 Kaluza-Klein modes

qkNẐk(q): index of k giants and their quantum fluctuations
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ZN(q) = Z∞(q)
∞∑
k=0

qkNẐk(q).

[R Arai, M Beccaria, A Cabo-Bizet, S Choi, D S Eniceicu, S Fujiwara, D Gaiotto, F F Gautason,

H Hayashi, Y Imamura, S Kim, E Lee, JHL, J Lee, J Liu, T Mori, S Murthy, T Nosaka, T Okazaki

L Pando Zayas, A Tseytlin, J van Muiden, ...]
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Giant gravitons are BPS branes on R× S3 ⊂ AdS5 × S5 that are
supported via a large angular momentum induced from the
background Ramond-Ramond potential C4.
[McGreevy-Susskind-Toumbas 00]
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Actually, these branes were originally discussed in the context of
the exclusion principle: As classical brane solutions, giant
gravitons on S3 ⊂ S5 have a maximal size of order N, which
translates to a hard cutoff on its energy and R-charge.

But the giant graviton expansion adds a new twist to this story.

14



Actually, these branes were originally discussed in the context of
the exclusion principle: As classical brane solutions, giant
gravitons on S3 ⊂ S5 have a maximal size of order N, which
translates to a hard cutoff on its energy and R-charge.

But the giant graviton expansion adds a new twist to this story.

14



Half-BPS example

To understand properties of the expansion, let’s examine the
formula in the simplest, half-BPS example:

1∏N
n=1(1− qn)

=
1∏∞

n=1(1− qn)

∞∑
k=0

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

.
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1∏N
n=1(1− qn)

=
1∏∞

n=1(1− qn)

∞∑
k=0

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

.

The half-BPS sector of U(N) N = 4 SYM is a purely bosonic sector
consisting of the states ∏

i

Tr Xni |0⟩,

modulo trace relations at finite N. LHS is the spectrum of these
gauge invariants.
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1∏N
n=1(1− qn)

=
1∏∞

n=1(1− qn)

∞∑
k=0

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

On the other hand, the bulk spectrum seems to overcount the
half-BPS spectrum of U(N) N = 4 SYM:

RHS = 1+ q+ 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + · · ·

+ qN
(
−q− 2q2 − 4q3 − 7q4 − 12q5 − 19q6 − · · ·

)
+ q2N

(
q3 + 2q4 + 5q5 + 9q6 + 17q7 + 28q8 + · · ·

)
+ q3N

(
−q6 − 2q7 − 5q8 − 10q9 − 19q10 − 33q11 − · · ·

)
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1∏N
n=1(1− qn)

=
1∏∞

n=1(1− qn)

∞∑
k=0

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

The overcounting is saved only by overall minus signs (−1)k that
result in large cancellations between BPS spectra computed on
different D-brane backgrounds.

Here, the stringy exclusion principle at finite N is a consequence
of the fact that there are delicate cancellations in the bulk
spectrum, as opposed to a hard cutoff.
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So where do the signs (−1)k come from?

Recall that the half-BPS sector is a purely bosonic sector, so
(−1)k could not have been due to the fermion number operator
(−1)F counting physical fermions mod Z2.

Surprisingly, we will find that (−1)k has a purely bosonic origin.
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Brane path integral

Let us compute the contribution of a wrapped D3-brane to the
half-BPS partition function

Z 1
2 -BPS(q) = lim

β→∞
Tr HS3

(
e−β(H−R)qR

)
.

Z 1
2 -BPS must be defined in terms of a projection as there is no
trace over HS3 of U(N) N = 4 SYM that gives Z 1

2 -BPS.

In the half-BPS sector, the index and partition functions are
equivalent up to an overall Casimir energy.
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To this end, we consider a thermal AdS5 × S5 twisted by a
background chemical potential µ for the relevant R-charge R:

ds2 =

EAdS5︷ ︸︸ ︷(
1+ ρ2

)
dτ 2 + 1

1+ ρ2
dρ2 + ρ2dΩ̂2

S3

+
1

1− r2
dr2 + r2 (dθ + i(µ− 1)dτ)2 + (1− r2)dΩ2

S3︸ ︷︷ ︸
S5

C4 =− iρ4dτ ∧ dΩ̂S3 + (1− r2)2 (dθ + i(µ− 1)dτ) ∧ dΩS3 ,

where τ ∼ τ + β and q = e−βµ.

[Beccaria-Cabo-Bizet 24] [JHL-Stanford, In progress]
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The euclidean continuation of the D3 giant graviton is wrapped
on the S1β × S3 of the twisted AdS5 × S5. The brane solution sits at
the center of AdS5 and wraps a maximal S3 ⊂ S5.

We will evaluate the partition function of this brane

Ẑ1 =
∫
DΦ e−SD3[Φ],

with bosonic action

SD3 =
N
2π2

∫ (
dτdΩ

√
det gD3 − iP[C4]

)
to 1-loop order.
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The on-shell contribution of the brane is

e−Son−shell = e−Nβµ = qN

To 1-loop, the half-BPS sector receives non-trivial contributions
only from two scalars ϕ, ϕ̄ that parametrize the transverse
fluctuations of the brane in S3 ⊂ S5:

Squad =
1
2π2

∫
dτdΩS3

[
˙̄ϕϕ̇ + ∂iϕ̄∂

i
ϕ + (1 + µ)

(
ϕ̄ϕ̇ − ˙̄ϕϕ

)
+

(
1− (1 + µ)2

)
ϕ̄ϕ

]

=
∑
n∈Z

∞∑
k=0

k
2∑

r1,r2=− k
2

ϕ̄
(k,r1,r2)
n

[( 2πn
β

)2
+ (1 + µ)

( 4πin
β

)
− (1 + µ)2 + (k + 1)2

]
ϕ
(k,r1,r2)
n

Until this point, the analysis is entirely standard.
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But let’s take a closer look at the lowest harmonics on S1β × S3:

Squad = −µ(µ+ 2) ϕ̄(0,0,0)
0 ϕ

(0,0,0)
0 + (highermodes)

For µ > 0, we observe that there are two bosonic unstable modes
with negative action. The higher modes are unaffected.

For Ẑ1−loop to be well-defined, the contours for the real and
imaginary parts of these modes need to be rotated in the
imaginary direction.

In the 1-loop path integral, the contour rotation introduces a
factor of i for each unstable mode. Since there are two such
modes, Ẑ1−loop for a single brane has an overall minus sign.
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Before proceeding further, we should ask the following:

Why should the rotated contour give the correct contribution to
the defining contour of the problem? i.e. in what situations does
a bosonic saddle contribute with a minus sign?
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To understand when this happens, consider a toy integral

I = 1
2π

∫
dθdϕ sin θ e−β(1−cos θ) =

1
β

(
1− e−2β

)
=

1
2π

∫
dθdϕdcϕdcθ e−β(1−cos θ)+sin θcθcϕ

which appears as a prototypical example for the
Duistermaat-Heckman localization formula.
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The integral is invariant under the hidden supersymmetry

Qθ = cθ, Qϕ = cϕ, Qcθ = 0, Qcϕ = −β.

Therefore, we can represent Q as

Q = d+ ιV

where V = −β ∂
∂ϕ

and it holds that Q2 = LV. The action is Q-exact
and the integral localizes to fluctuations around fixed points
θ = 0, π of the vector field V.
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I = 1
2π

∫
dθdϕ sin θ e−β(1−cos θ) =

1
β

(
1− e−2β

)
The integral I can be exactly evaluated both directly and in the
saddle approximation around the north and south poles.
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North pole: (dominant saddle) Take θ = θ̂ with small θ̂. Then

Z(N) =
∫
dθ̂ dcϕ dcθ̂ e

− 1
2βθ̂

2 + θ̂ c
θ̂
cϕ

=

∫ ∞

0
dθ̂ θ̂ e−

1
2βθ̂

2
=

1
β
.

The saddle at the north pole is the dominant saddle, but it
overestimates the answer.

South pole (subleading saddle): . Take θ = π − θ̂ with small θ̂.
Then

Z(S) = e−2β
∫
dθ̂ dcϕ dcθ̂ e

1
2βθ̂

2 − θ̂ c
θ̂
cϕ

= e−2β
∫ 0

±i∞
dθ̂ (−θ̂) e

1
2βθ̂

2
= −e

−2β

β
.

There is an overall minus sign from the contour rotation.
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The range of integration for θ̂ here requires some explanation:

Let us decompose the defining contour for θ into Lefschetz
thimbles associated with the critical points at the north and
south poles. We can wiggle the steepest descent contour
emanating from θ = 0 by introducing a small positive imaginary
part to β.

30
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Then in the complex θ-plane, the thimble emanating from θ = 0
hugs the interval [0, π] from below and then asymptotes to
π − i∞.

To compensate, the thimble associated to the critical
point θ = π must start from π − i∞ and end at π. Therefore, the
rotated contour is one that contributes to the defining contour
for θ.

This explains the range of integration for θ̂ in Z(S).
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The lesson from the toy example is that rotating the contour for
unstable modes about a subdominant saddle can correspond to
a correct contribution to the defining contour, when the
dominant saddle overestimates the exact answer.

So we can interpret minus sign in the brane path integral as that
compensating for the overcounting of the naive half-BPS
Kaluza-Klein spectrum: 1∏∞

n=1(1−qn)
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With this lesson in mind, let us return to the computation of the
1-loop brane partition function.
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The 1-loop brane partition function with all fluctuations is

Z1−loop
[
p = e−β

]
=

∞∏
n=0

S5 Scalars︷ ︸︸ ︷[ 1
(1− qpn+2)(1− q−1pn)

](n+1)2

AdS5 Scalars︷ ︸︸ ︷[ 1
1− pn+1

]4(n+1)2 Vector︷ ︸︸ ︷[ 1
1− pn+2

]2(n+1)(n+3)
×

[(
1 +

√
qpn+2

)(
1 +

1
√q

pn+2
)(

1 +
√
qpn+1

)(
1 +

1
√q

pn+1
)]2(n+1)(n+2)

︸ ︷︷ ︸
Fermions

=
−q
1− q

+ O
(
e−β

)

The term in blue at n = 0 arises from two unstable bosonic
modes on the worldvolume, whose contours need to be rotated
in the imaginary direction.
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The 1-loop brane partition function with all fluctuations is
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The 1-loop analysis may be generalized to k-coincident wrapped
branes, and their BPS spectrum is

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

.

There are 2k gauge-invariant, unstable bosonic modes on their
worldvolumes.
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The boundary dual

So far, we’ve seen that BPS partition functions Ẑk(q) of k giant
graviton branes possess overall signs (−1)k, which resulted from
the fact that there were 2k unstable bosonic scalar modes on the
worldvolume.
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Now suppose we wish to associate a state-counting
interpretation

Tr HNe
−µR

for the sum

1∏∞
n=1(1− qn)

∞∑
k=0

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

over Ẑk(q). Then (−1)k would need to come from a grading in the
associated Hilbert space HN.
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However, we know that the half-BPS Hilbert space HN in N = 4
SYM is purely bosonic and is graded only with respect to the
energy H and the R-charge R.

In other words, there seems to be no extra grading required to
provide the (−1)k.
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Obvious question: How is the BPS spectrum Ẑk of D3 giants in
AdS5 × S5 encoded in the boundary U(N) N = 4 SYM?

To answer this question, we need to identify the “states” in the
boundary gauge theory that possess an extra grading and also
reproduce the spectrum

qkN qk(k+1)/2∏k
n=1(1− qn)

.

Identifying such states is made subtle because, as argued above,
these states cannot belong in the physical half-BPS Hilbert space
HN of the gauge theory.
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We obtain clues regarding the nature of these “states” by
examining the “mode” expansion in z of the determinant
operator det(z− X) inserted at a point in U(N) N = 4 SYM.

This operator is dual to a family of D3 giant graviton solutions
wrapped on S3 ⊂ S5 with order N units of an R-charge.

The auxiliary parameter z has an interpretation as the bulk
insertion point of the brane on the plane transverse to S3 in S5.
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The fluctuation “modes” in z of the determinant operator are

det(z− X) = zNe−
∑∞

n=1
1
n z

−nTr Xn = zN
∞∑
n=0

(−1)n
zn Pn(Tr X•).

The first few coefficients are

P1 = Tr X

P2 =
1
2

(
(Tr X)2 − (Tr X2)

)
P3 =

1
6

(
(Tr X)3 − 3(Tr X)(Tr X2) + 2(Tr X3)

)
P4 =

1
24

(
(Tr X)4 − 6(Tr X)2(Tr X2) + 3(Tr X2)2

+ 8(Tr X)(Tr X3)− 6(Tr X4)
)

and so on.
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At any positive integer value N, the tower of “modes”

det(z− X) = (−1)N+1
[
· · ·+ PN+1

z − PN+2
z2 +

PN+3
z3 + · · ·

]
starting at PN+1 are but the trace relations between
gauge-invariant operators that are present in any U(N) gauge
theory with the complex scalar X.

In other words, states constructed by acting with modes
PN+1, PN+2, · · · on the vacuum |0⟩ are the finite N null states.
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These are null states that need to be separately accounted for
only if we decide to work with the gauge-invariant variables

Tr X,Tr X2,Tr X3, · · ·

rather than with the matrix components.

We observe that a single tower of these null states have the
correct BPS spectrum

qN q
1− q

of a single D3 giant.
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Let us account for the null state constraints PN+1, PN+2, · · · using
the BRST formalism.

To impose constraints in the BRST formalism, we introduce
anti-commuting ghosts χ along with a homological charge Q̂
acting as

[χ−N−a, Q̂]± = PN+a
[Pa, Q̂]± = 0,

where a = 1, 2, · · · . The (co)homology of Q̂ is the half-BPS state
space of U(N) N = 4 SYM, which is the quotient of the half-BPS
state space of U(∞) SYM by the trace relations.

Assign ghost number 1 to χa and −1 to the differential
Q̂ = [ · , Q̂]±.
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These auxiliary ghosts should be distinguished from the usual
BRST (anti-)ghosts that one introduces for gauge-fixing in a U(N)
gauge theory.

Rather, the role of the auxiliary ghost χa and the differential Q̂ is
to supplement the U(∞) theory with directions for systematically
removing all but the U(N) degrees of freedom.
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It is simple to compute the spectrum with ghost number k in the
half-BPS sector, because this sector does not have
ghosts-for-ghosts.

The states with ghost number k are multi-ghost states built out
of k χ’s. We can write a basis of k multi-ghost states as

χ−N−a1χ−N−a2 · · ·χ−N−ak |0⟩

where 1 ≤ a1 < a2 < · · · < ak <∞, which yields the charge
spectrum

(−1)kqkN qk(k+1)/2∏k
n=1(1− qn)

.

This agrees with the bulk computation of the BPS spectrum of k
D3 giants. Here, the signs (−1)k must be included because the
ghosts χ are implementing null relations.
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Bulk Half-BPS space of states

What does the identification between the half-BPS states of bulk
D-branes and auxiliary ghosts in a (suitably-rewritten) boundary
N = 4 SYM suggest about the bulk half-BPS space of states?

47



We can organize the space of multi-ghost states, with coefficients
in the ring of polynomials of traces

R = C[Tr X,Tr X2,Tr X3, · · · ],

into a complex

· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ H∞ → 0,

where Vk is the space of multi-ghost states of ghost number k,
with coefficients in the ring R.

H∞ = R|0⟩: half-BPS space of states of N = 4 SYM at infinite N.

Q̂ = [ · , Q̂]± acts on operators via the graded Leibniz rule.
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· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ H∞ → 0,

The comparison of the spectrum suggests that Vk should be
identified with the perturbative space of states built on
AdS5 × S5 in the presence of k-coincident half-BPS giants.
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· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ H∞ → 0,

This complex has non-vanishing homology only at zero ghost
number. Since the image Q̂V1 ⊂ H∞ is the space of trace
relations with coefficients in R, the homology at ghost number
k = 0 is the Hilbert space

HN = H∞/Q̂V1.

in the half-BPS sector of U(N) N = 4 SYM at finite N.
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Let us observe that each Vk, k = 0, 1, 2, · · · in the above complex
is a Fock space built from the multi-ghost generators

χ−N−a1χ−N−a2 · · ·χ−N−ak |0⟩

with coefficients in R = C[Tr X,Tr X2,Tr X3, · · · ].

(i.e. Vk are free R-modules)
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This means that, if we augment the complex with HN at the final
step, the resulting exact sequence

· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ H∞ → HN → 0

is a “free resolution” of the half-BPS space of states HN at finite
N.

Roughly speaking, a free resolution is the procedure of replacing
a highly-constrained space HN with a sequence of unconstrained
Fock spaces Vk, whose generators represent the constraints on
HN.
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The resolution gives a precise relationship between

1. Half-BPS space of states HN of U(N) N = 4 SYM at finite N

2. The complex

· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ H∞ → 0,

identified as the bulk half-BPS space of states in AdS5 × S5.

This is an extended Hilbert space whose (co)homology yields the
physical Hilbert space HN.

The resolution says that quantum fluctations of certain bulk
D-branes are encoded in the relations between the single-trace
generators that arise in the boundary gauge theory at finite N.
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It is simple to use this observation to recover the giant graviton
expansion

1∏N
n=1(1− qn)

=
1∏∞

n=1(1− qn)

∞∑
k=0

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

.

in the half-BPS sector.
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It is a property of exact sequences, e.g.

· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ H∞ → HN → 0

the alternating sum of the dimensions of spaces in the complex
vanishes.

Therefore, we can express the charge spectrum of HN in terms of
an alternating sum of the charge spectra of Vk over k = 0, 1, 2, · · · :

Tr HNq
R =

∞∑
k=0

(−1)kTr Vkq
R.
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Tr HNq
R =

∞∑
k=0

(−1)kTr Vkq
R

This alternating sum formula shares its origin with that appearing
in the BRST approach to minimal models on a torus. The space
Vk of k-th order relations in our context plays the role of the
space of Virasoro descendants of singular vectors in 2d CFTs.
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The alternating sum formula yields the half-BPS giant graviton
expansion:

1∏N
n=1(1− qn)

=
1∏∞

n=1(1− qn)

∞∑
k=0

(−1)kqkN qk(k+1)/2∏k
m=1(1− qm)

.

The closed string spectrum Z∞ =
∏∞

n=1
1

1−qn factored out on the
RHS, because Vk are free R-modules and Z∞ is the half-BPS
partition function of H∞ = R|0⟩.
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What is the bulk interpretation of the differential Q̂?

It maps a half-BPS state of k coincident D3 giants to linear
combinations of states of k− 1 coincident D3 giants with
coefficients in the traces (i.e. closed strings), e.g.

Q̂χ−N−a = PN+a
Q̂(χ−N−aχ−N−b) = PN+a χ−N−b − PN+b χ−N−a

where PN+a = PN+a(Tr X•) is a trace relation of charge N+ a.

Thus a natural interpretation for Q̂ is that it is an instanton that
interpolates between a pair of vacua labelled by k and k− 1
wrapped D-branes in AdS5 × S5.
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The lessons from the half-BPS sector are the following:

1. We can identify the bulk space of states with the complex of
auxiliary ghosts that implement finite N trace relations via
Q̂-homology

2. This complex furnishes a BRST-like resolution of the finite N
space of states HN of the boundary gauge theory
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While the bulk computations in the half-BPS sector relied on
supersymmetry and the presence of a weakly-curved gravity limit,
let me argue that the lessons above do not rely crucially on
those properties.

Trace relations between gauge-invariant operators are present in
any finite N gauge theory with adjoint fields.

At least when λ = 0, it is always possible to write the space of
states of this theory as that of a U(∞) gauge theory
supplemented with auxiliary ghosts for trace relations that would
have been present at a value of N.
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In more general situations, e.g. when H∞ = R|0⟩ is given by

R = C[Tr X,Tr XY,TrψF···,Tr ∂···∂···X, · · · ].

acting on the vacuum |0⟩, the trace relations may satisfy
non-trivial relations among themselves, e.g.

r1PN+a1 + r2PN+a2 + · · · = 0, {ri ̸= 0} ∈ R

Then computing a free resolution requires introducing
ghosts-for-ghosts, etc. as in the BRST formalism. The algorithm
for computing such a resolution is called the Koszul-Tate
resolution. [Tate 57, Henneaux-Teitelboim 92]
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Lefschetz trace formula

Assuming that one has computed the Koszul-Tate resolution (up
to an energy cutoff),

· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ H∞ → HN → 0

the Lefschetz trace formula relates the trace taken over HN with
an alternating sum of the traces taken over Vk.
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For instance, the free thermal partition function of a U(N) gauge
theory on S1 × S3 is equal to the alternating sum of the free
thermal partition functions over Vk of the Koszul-Tate resolution:

Tr HNe
−βH =

∞∑
k=0

(−1)kTr Vke
−βH.

The thermal correlation functions are related as

Tr HN

[
e−βHO1(τ1, x1)O2(τ2, x2) · · · On(τn, xn)

]
=

∞∑
k=0

(−1)kTr Vk

[
e−βHO1(τ1, x1)O2(τ2, x2) · · · On(τn, xn)

]
where 0 ≤ τn < · · · < τ2 < τ1 < β.
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For superconformal gauge theories with non-anomalous
R-symmetry, we can write in addition the relation between the
superconformal indices

Tr HN

[
(−1)Fe−β{Q,Q†}qC11 q

C2
2 · · ·

]
=

∞∑
k=0

(−1)kTr VN
k

[
(−1)Fe−β{Q,Q†}qC11 q

C2
2 · · ·

]
where Ci are conserved charges that commute with the
supercharge Q.
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Therefore, the Lefschetz trace formula appears to provide a
gauge-string map at λ = 0 and finite N.

The bulk observables are computed by taking the alternating
sum of the expectation values in an ensemble of states built on
each open string vacuum.
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Currently, the tools available in the bulk only allow us to
compute BPS quantities in the large λ regime and then to
extrapolate those quantities to λ→ 0 for comparison to gauge
theory computations.

It would be nice to compare the gauge and string theory results
directly at λ = 0 in the future, e.g. conformal boundary
conditions of tensionless strings in AdS5 × S5. [Gaberdiel-Gopakumar 21]
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Thank you
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